Instability and convection in core collapse supernovae

Thierry Foglizzo CEA Saclay

Some beautiful (possible) consequences of SASI

-Neutron star kicks (Scheck et al. 2004, 2006)

VOLUME 92, NUMBER 1 PHYSICAL REVIEW LETTERS week ending 9 JANUARY 2004

Pulsar Recoil by Large-Scale Anisotropies in Supernova Explosions

L. Scheck, ¹ T. Plewa, ^{2,3} H.-Th. Janka, ¹ K. Kifonidis, ¹ and E. Müller ¹

-Seed the H/He mixing in the neutrino-driven explosion of 1987A, 1s<t<10⁴s (*Kifonidis et al. 2006*)

Non-spherical core collapse supernovae

II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A*

K. Kifonidis¹, T. Plewa², L. Scheck¹, H.-Th. Janka¹, and E. Müller¹

-Spin up of the neutron star (Blondin & Mezzacappa 2007)

LETTERS

Pulsar spins from an instability in the accretion shock of supernovae

John M. Blondin¹ & Anthony Mezzacappa²

- New explosion mechanism driven by acoustic waves, initiated by the advective-acoustic cycle (Burrows et al. 2005, 2006)

A NEW MECHANISM FOR CORE-COLLAPSE SUPERNOVA EXPLOSIONS

A. Burrows, E. Livne, L. Dessart, C. D. Ott, And J. Murphy Received 2005 October 10: accepted 2005 November 28

2.0 W12 entropy [k_B/nuc.] 12 E 1.5 0 1.0 × 0.5 0.0 -2 -1 0 1 2 z [10⁷ cm]

Instabilities during the phase of stalled accretion shock

convection? SASI 2003? SASI 2006? advective-acoustic cycle?

- Convection in the gain region, low 1?

(Herant, Benz & Colgate 1992)

Foglizzo, Scheck & Janka (2006)

- l=1,2 SASI in an adiabatic flow:

advective-acoustic cycle?

Blondin et al. '03, Ohnishi et al. '06, Foglizzo et al. '07, Yamasaki & Yamada '07 or

purely acoustic mechanism ??

Blondin & Mezzacappa '06, Blondin & Shaw '07

see also the advective-acoustic cycle in an adiabatic or isothermal accellerated flow Foglizzo & Tagger '00, Foglizzo '01, '02, Foglizzo et al. '05

What do we understand of SASI?

vibrations in Ariane 5: segmented solid propergol Mettenleiter, Haile & Candel (2000) J. of Sound and Vibration 230, 761

impinging shear layers
Rockwell, D. (1983), AIAA J., 21, 645

« Aero-acoustic » instabilities

- advected perturbations
- acoustic feedback

• « vortical-acoustic » cycle

whistling kettle Chanaud & Powell (1965) J. Acoust.Soc. Am. 37, 902

• « entropic-acoustic » cycle

rumble instability of ramjet combustors

Abouseif, Keklak & Toong (1984) Combustion Science and Technology, 36, 83

The simplest example of an advective-acoustic instability

-parallel adiabatic flow, localized coupling $(\gamma, M_1, \Delta\Phi, \Delta z_{\nabla})$ -2-D perturbations ω, k_1

$$\Delta z_{\nabla} = 0$$

$$\Delta z_{\nabla} = 0.1$$

$$\mathcal{Q}e^{i\omega\tau_{\mathcal{Q}}} + \mathcal{R}e^{i\omega\tau_{\mathcal{R}}} = 1$$

 $au_{\mathcal{Q}} \equiv rac{1 + \mu_{
m in} \mathcal{M}_{
m in}}{1 - \mathcal{M}_{
m in}^2} rac{z_{
m sh} - z_{
abla}}{|v_{
m in}|} ag{ au_{
m R}} \equiv rac{2\mu_{
m in}}{1 - \mathcal{M}_{
m in}^2} rac{z_{
m sh} - z_{
abla}}{c_{
m in}}$

$$\mathcal{Q}_{\mathrm{c}} \equiv \frac{\frac{4\mu_{\mathrm{in}}}{\mathcal{M}_{\mathrm{in}}}(1-\mathcal{M}_{\mathrm{in}}^2)\left(1-\frac{1}{\mathcal{M}_{\mathrm{i}}^2}\right)}{\mu_{\mathrm{out}}\frac{c_{\mathrm{in}}^2}{c_{\mathrm{out}}^2} + \mu_{\mathrm{in}}\frac{\mathcal{M}_{\mathrm{out}}}{\mathcal{M}_{\mathrm{in}}}} \frac{\mathcal{M}_{\mathrm{out}} + \mu_{\mathrm{out}}}{1+\mu_{\mathrm{out}}\mathcal{M}_{\mathrm{out}}} \left[\frac{1-\frac{c_{\mathrm{in}}^2}{c_{\mathrm{out}}^2} + \frac{k_x^2c_{\mathrm{in}}^2}{\omega^2}(\mathcal{M}_{\mathrm{in}}^2 - \mathcal{M}_{\mathrm{out}}^2)}{(\gamma+1)(1-\mu_{\mathrm{in}}\mathcal{M}_{\mathrm{in}})(\mu_{\mathrm{in}}^2 + 2\mu_{\mathrm{in}}\mathcal{M}_{\mathrm{in}} + \mathcal{M}_{\mathrm{i}}^{-2})}\right]$$

$$R = \frac{\mu_{out} M_{in} c_{in}^{2} - \mu_{in} M_{out} c_{out}^{2}}{\mu_{out} M_{in} c_{in}^{2} + \mu_{in} M_{out} c_{out}^{2}} \left(\frac{1 + \mu_{in} M_{in}}{1 - \mu_{in} M_{in}} \right) \frac{\mu_{in}^{2} - 2\mu_{in} M_{in} + \frac{1}{M_{i}^{2}}}{\mu_{in}^{2} + 2\mu_{in} M_{in} + \frac{1}{M_{i}^{2}}}$$

$$|\mathcal{R}| \leq 1$$

$$\mu^2 \equiv 1 - \frac{k_x^2 c^2}{\omega^2} (1 - \mathcal{M}^2)$$

$$|\mathcal{R}| \le 1$$

Asymmetry without convection: numerical simulation of a stalled accretion shock on a neutron star

Evidence for a vortical-acoustic cycle (Blondin et al. 2003)

A purely acoustic cycle ? (Blondin & Mezzacappa 2006)

Toy model:

- -perfect inviscid gas
- $-\gamma = 4/3$
- -no heating
- -simplified cooling $L \sim \rho^{\beta} T^{\alpha}$
- -Euler equation
- -adiabatic shock

What is the instability mechanism behind SASI?

(Foglizzo, Galletti, Scheck & Janka 2007)

I- Linear stability analysis

SASI toy model: -perfect inviscid gas

- $-\gamma = 4/3$
- -no heating
- -Euler equation
- -adiabatic shock

Simplified cooling function

$$L \sim \rho^{\beta} T^{\alpha}$$

 α =6, β =1 (settling flow) α =3/2, β =5/2 (cooling runaway)

What is the instability mechanism behind SASI?

(Foglizzo, Galletti, Scheck & Janka 2007)

II- Beyond the eigenfrequencies: efficiencies Q, R of 2 cycles

Conclusions

Neutrino-driven convection in the gain region cannot be held responsible for pulsar kicks

SASI is due to the instability of an advective-acoustic cycle Q>1, R<1

- growth time ~ advection time
- oscillation period ~ acoustic time

Simple toy model of the advective-acoustic instability in a decelerated flow

- sensitivity to the radial size Δz_{∇} of the deceleration region
- gradient cut-off ω_{∇} -> low frequency, low 1

Numerical simulations: advection of vorticity, grid size in the region of deceleration?

Core-collapse consequences

- 1
 - radial size of the cooling region of deceleration?
 - rotation of the core: kick-spin alignment? spin up?

.